Title: Hubble Space Telescope Investigation of Main-Belt Comet 133P/Elst-Pizarro Author: David Jewitt, Masateru Ishiguro, Harold Weaver, Jessica Agarwal, Max Mutchler, Steven Larson
We report new observations of the prototype main-belt comet (active asteroid) 133P/Elst-Pizarro taken at high angular resolution using the Hubble Space Telescope. The object has three main components; a) a point-like nucleus, b) a long, narrow antisolar dust tail and c) a short, sunward anti-tail. There is no resolved coma. The nucleus has a mean absolute magnitude H_V = 15.70+/-0.10 and a lightcurve range 0.42 mag., the latter corresponding to projected dimensions 3.6 x 5.4 km (axis ratio 1.5:1), at the previously measured geometric albedo of 0.05+/-0.02. We explored a range of continuous and impulsive emission models to simultaneously fit the measured surface brightness profile, width and position angle of the antisolar tail. Preferred fits invoke protracted emission, over a period of 150 days or less, of dust grains following a differential power-law size distribution with index 3.25 < q < 3.5 and having a wide range of sizes. Ultra-low surface brightness dust projected in the sunward direction is a remnant from emission activity occurring in previous orbits, and consists of the largest (>cm-sized) particles. Ejection velocities of one micron-sized particles are comparable to the ~1.8 m/s gravitational escape speed of the nucleus, while larger particles are released at speeds less than the gravitational escape velocity. The observations are consistent with, but do not prove, a hybrid hypothesis in which mass loss is driven by gas drag from the sublimation of near-surface water ice, but escape is aided by centripetal acceleration from the rotation of the elongated nucleus. No plausible alternative hypothesis has been identified.
Half Comet-Half Asteroid Confirmed Not a Fluke Back in 1996, astronomers discovered a strange object in the asteroid belt. They decided it was either a "lost" comet or an icy asteroid, as it ejected dust like a comet but had an orbit like an asteroid. No one had ever seen anything like the object, called 133P. Ever since it was found, astronomers have wondered if it was just an oddity - one of a kind. We now know it is not, and the discovery of more of these half asteroids/half comets means there is a new class of objects in our solar system.