Scientists have identified one of the fundamental chemical buildings blocks of life in a comet for the first time, the US space agency (Nasa) reports. Glycine is an amino acid found in proteins, the sophisticated molecules that organisms use to build and maintain their systems. It was detected in the material ejected from Comet Wild-2 in 2004 and grabbed by Nasa's Stardust probe.
The flyby of the Stardust Spacecraft as captured by C-14 Telescope. The Spacecraft moves from lower right to upper left. Date/Time: 2009 JAN 14, 05:14 to 05:47 UT
On January 14 the Stardust-NExT interplanetary spaceprobe will make a close pass of the Earth. The purpose of the flyby is to make perturbation (gravitational) manoeuvre in the trajectory towards the comet 9/P Tempel 1. Observations of the event is favourable for amateurs in Europe. The approach minimum distance will be at 19: 17 UTC, and will be well placed, high in the sky. The expected apparent magnitude of the spaceprobe may reach magnitude 11 -12.
The STARDUST-NExT spacecraft is derived from the Space Probe deep space bus developed by Lockheed Martin Astronautics in Denver, Colorado. This new lightweight spacecraft incorporates components, virtually all of which are either currently operating in space or are flight qualified and manifested to fly on upcoming missions. The total weight of the spacecraft including the propellant needed for deep space manoeuvres is 380 kilograms. The overall length of the main bus is 1.7 metres, about the size of an average office desk.
Stardust Return Capsule Joins the Milestones of Flight on Display at the Smithsonian's National Air and Space Museum After a 3 billion-mile journey to rendezvous with a comet, the Stardust return capsule joins the national collection of flight icons Wednesday, Oct. 1, the 50th anniversary of NASA. The capsule will be prominently displayed in the central Milestones of Flight gallery, home to many of the "firsts" of flight, including Charles Lindbergh's Spirit of St. Louis, Chuck Yeager's Bell X-1 and the Apollo 11 Command Module.
In a new analysis of rare comet dust samples, a team of researchers including Takayuki Ushikubo, Noriko Kita, and John Valley of the University of Wisconsin-Madison has identified unexpected chemical and isotope signatures that challenge existing views about the formation and history of the solar system. Tiny crystals from the Wild 2 comet, captured by NASAs Stardust mission, resemble fragments of the molten mineral droplets called chondrules, shown here, found in primitive meteorites. That similar flash-heated particles were found in Wild 2, a comet formed in the icy fringes of outer space, suggests that solid materials may have been transported outward in the young solar system
Fragments of cosmic material captured by a NASA mission have arrived at The University of Manchester for analysis, with researchers hoping to unlock the secrets of what space was like billions of years ago. Scientists in Manchester have received small fragments of material from the Wild 2 comet (pronounced 'Vilt 2' after the Swiss astronomer who discovered it), which was brought back to earth by NASA's Stardust space mission.
Samples of the material picked up during the NASA Stardust mission indicate that parts of the comet Wild 2 actually formed in an area close to the sun. New research by an international collaboration including Livermore researcher Saa Bajt analysed noble gases within Stardust samples. The helium and neon isotope analysis suggests that some of the Stardust grains match a special type of carbonaceous material found in meteorites; hence both must have spent time in the same gas reservoir, which was close to the sun.
Après huit ans de voyage, la mission Stardust de la NASA (programme Discovery) rapportait sur Terre, le 15 janvier 2006, des poussières de quelques microns émanant de la comète 81P/Wild 2. Ces poussières piégées dans un aérogel de silice témoignent de la composition des comètes qui fait encore débat. Formées loin du soleil, les comètes n'ont jamais été portées à haute température et conservent les gaz primordiaux. Des équipes françaises ont participé à cette aventure et reçu pour analyse des grains de la comète, parmi elles, le Centre de recherches pétrographiques et géochimiques de Nancy (CRPG, CNRS). Bernard Marty et ses collègues américains des universités du Minesota, de Berkeley et du Lawrence Livermore National Laboratory livrent cette semaine dans la revue Science les premières analyses de gaz rares de comètes jamais réalisées en laboratoire. Ces gaz présentent des similarités avec ceux piégés dans la matière organique des météorites primitives, avec des concentrations jusqu'à un million de fois plus élevées. Ces données attestent d'un lien génétique possible entre ces objets et d'un processus d'implantation par irradiation précoce par le Soleil naissant. Elles rendent crédible une contribution importante des comètes aux atmosphères des planètes internes. Les équipes scientifiques ont bénéficié, au fil des années, d'un soutien important du CNES et de l'Institut national des sciences de l'univers du CNRS, ainsi que d'un support de la région Lorraine