* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Supernovae progenitor


L

Posts: 131433
Date:
Type Ia supernovae progenitors
Permalink  
 


Title: Progenitors of type Ia supernovae
Authors: Bo Wang, Zhanwen Han

Type Ia supernovae (SNe Ia) play an important role in astrophysics and are crucial for the studies of stellar evolution, galaxy evolution and cosmology. They are generally thought to be thermonuclear explosions of accreting carbon-oxygen white dwarfs (CO WDs) in close binaries, however, the nature of the mass donor star is still unclear. In this article, we review various progenitor models proposed in the past years and summarize many observational results that can be used to put constraints on the nature of their progenitors. We also discuss the origin of SN Ia diversity and the impacts of SN Ia progenitors on some fields. The currently favourable progenitor model is the single-degenerate (SD) model, in which the WD accretes material from a non-degenerate companion star. This model may explain the similarities of most SNe Ia. It has long been argued that the double-degenerate (DD) model, which involves the merger of two CO WDs, may lead to an accretion-induced collapse rather than a thermonuclear explosion. However, recent observations of a few SNe Ia seem to support the DD model, and this model can produce normal SN Ia explosion under certain conditions. Additionally, the sub-luminous SNe Ia may be explained by the sub-Chandrasekhar mass model. At present, it seems likely that more than one progenitor model, including some variants of the SD and DD models, may be required to explain the observed diversity of SNe Ia.

Read more (384kb, PDF)



__________________


L

Posts: 131433
Date:
SNR 0509-67.5
Permalink  
 


Title: The center of the Type Ia supernova remnant SNR 0509-67.5 is empty of any ex-companion star to M_V=+8.4
Authors: Bradley E. Schaefer, Ashley Pagnotta

Type Ia supernova (SNe Ia) are thought to originate in the explosion of a white dwarf. The explosion could be triggered by the merger of two white dwarfs ('double-degenerate' origin), or by mass transfer from a companion star (the 'single-degenerate' path). The identity of the progenitor is still controversial; for example, a recent argument against the single-degenerate origin has been widely rejected. One way to distinguish between the double- and single-degenerate progenitors is to look at the center of a known SN Ia remnant to see whether any former companion star is present. A likely ex-companion star for the progenitor of Tycho's supernova has been identified, but that claim is still controversial. Here we report that the central region of the supernova remnant SNR 0509-67.5 (the site of a Type Ia supernova 400+-50 years ago, based on its light echo) in the Large Magellanic Cloud contains no ex-companion star to a limit of V=26.9 magnitude (M_V=+8.4) within the extreme 99.73% region with radius 1.43". The lack of any ex-companion star to deep limits rules out all published single-degenerate models. The only remaining possibility is that the progenitor for this particular SN Ia was a double-degenerate system.

Read more (926kb, PDF)



__________________


L

Posts: 131433
Date:
Supernovae progenitor
Permalink  
 


Hubble Solves Mystery on Source of Supernova in Nearby Galaxy

Using NASA's Hubble Space Telescope, astronomers have solved a longstanding mystery on the type of star, or so-called progenitor, that caused a supernova in a nearby galaxy. The finding yields new observational data for pinpointing one of several scenarios that could trigger such outbursts.
Based on previous observations from ground-based telescopes, astronomers knew that a kind of supernova called a Type Ia created a remnant named SNR 0509-67.5, which lies 170,000 light-years away in the Large Magellanic Cloud galaxy. The type of system that leads to this kind of supernova explosion has long been a high importance problem with various proposed solutions but no decisive answer. All these solutions involve a white dwarf star that somehow increases in mass to the highest limit. Astronomers failed to find any companion star near the center of the remnant, and this rules out all but one solution, so the only remaining possibility is that this one Type Ia supernova came from a pair of white dwarfs in close orbit.

Read more 



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard