* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Jet structure in 0836+710


L

Posts: 131433
Date:
S5 0836+710
Permalink  
 


Title: S5 0836+710: An FRII jet disrupted by the growth of a helical instability?
Authors: Manel Perucho, Iván Martí-Vidal, Andrei P. Lobanov, Philip E. Hardee

The remarkable stability of extragalactic jets is surprising, given the reasonable possibility of the growth of instabilities. In addition, much work in the literature has invoked this possibility in order to explain observed jet structures and obtain information from these structures. For example, it was recently shown that the observed helical structures in the jet in S5 0836+710 could be associated with helical pressure waves generated by Kelvin-Helmholtz instability. Our aim is to resolve the arc-second structure of the jet in the quasar S5 0836+710 and confirm the lack of a hot-spot (reverse jet-shock) found by present observing arrays, as this lack implies a loss of jet collimation before interaction with the intergalactic medium. In this work, we use an observation performed in 2008 using EVN and MERLIN. The combined data reduction has provided a complete image of the object at arc-second scales. The lack of a hot-spot in the arc-second radio structure is taken as evidence that the jet losses its collimation between the VLBI region and the region of interaction with the ambient medium. This result, together with the previous identification of the helical structures in the jet with helical pressure waves that grow in amplitude with distance, allow us to conclude that the jet is probably disrupted by the growth of Kelvin-Helmholtz instability. This observational evidence confirms that the physical parameters of jets can be extracted using the assumption that instability is present in jets and can be the reason for many observed structures. Interestingly, the observed jet is classified as a FRII object in terms of its luminosity, but its large-scale morphology does not correspond to this classification. The implications of this fact are discussed.

Read more (265kb, PDF)



__________________


L

Posts: 131433
Date:
4C71.07
Permalink  
 


Title: Anatomy of helical relativistic jets: The case of S5 0836+710
Authors: Manel Perucho, Yuri Y. Kovalev, Andrei P. Lobanov, Philip E. Hardee, Ivan Agudo

Helical structures are common in extragalactic jets. They are usually attributed in the literature to periodical phenomena in the source (e.g., precession). In this work, we use VLBI data of the radio-jet in the quasar S5 0836+710 and hypothesize that the ridge-line of helical jets like this corresponds to a pressure maximum in the jet and assume that the helically twisted pressure maximum is the result of a helical wave pattern. For our study, we use observations of the jet in S5 0836+710 at different frequencies and epochs. The results show that the structures observed are physical and not generated artificially by the observing arrays. Our hypothesis that the observed intensity ridge-line can correspond to a helically twisted pressure maximum is confirmed by our observational tests. This interpretation allows us to explain jet misalignment between parsec and kiloparsec scales when the viewing angle is small, and also brings us to the conclusion that high-frequency observations may show only a small region of the jet flow concentrated around the maximum pressure ridge-line observed at low frequencies. Our work provides a potential explanation for the apparent transversal superluminal speeds observed in several extragalactic jets by means of transversal shift of an apparent core position with time.

Read more (1066kb, PDF)



__________________


L

Posts: 131433
Date:
Jet structure in 0836+710
Permalink  
 


Title: Physical properties of the jet in 0836+710 revealed by its transversal structure
Authors: M. Perucho, A.P. Lobanov

Studying the internal structure of extragalactic jets is crucial for understanding their physics. The Japanese-led space VLBI project VSOP has presented an opportunity for such studies, by reaching baseline lengths of up to 36,000 km and resolving structures down to an angular size of \approx 0.3 mas at 5 GHz. VSOP observations of the jet in 0836+710 at 1.6 and 5 GHz have enabled tracing of the radial structure of the flow on scales from 2 mas to 200 mas along the jet and determination of the wavelengths of individual oscillatory modes responsible for the formation of the structure observed. We apply linear stability analysis to identify the oscillatory modes with modes of Kelvin-Helmholtz instability that match the wavelengths of the structures observed. We find that the jet structure in 0836+710 can be reproduced by the helical surface mode and a combination of the helical and elliptic body modes of Kelvin-Helmholtz instability. Our results indicate that the jet is substantially stratified and different modes of the instability grow inside the jet at different distances to the jet axis. The helical surface mode can be driven externally, and we discuss the implications of the driving frequency on the physics of the active nucleus in 0836+710.

Read more (596kb, PDF)

__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard