Title: One Law To Rule Them All: The Radial Acceleration Relation of Galaxies Author: Federico Lelli (1), Stacy S. McGaugh (1), James M. Schombert (2), Marcel S. Pawlowski (1, 3) ((1) Case Western Reserve University, (2) University of Oregon, (3) University of California, Irvine)
We study the link between baryons and dark matter (DM) in 240 galaxies with spatially resolved kinematic data. Our sample spans 9 dex in stellar mass and includes all morphological types. We consider (i) 153 late-type galaxies (LTGs; spirals and irregulars) with gas rotation curves from the SPARC database; (ii) 25 early-type galaxies (ETGs; ellipticals and lenticulars) with stellar and HI data from ATLAS^3D or X-ray data from Chandra; and (iii) 62 dwarf spheroidals (dSphs) with individual-star spectroscopy. We find that LTGs, ETGs, and "classical" dSphs follow the same radial acceleration relation: the observed acceleration g_obs correlates with that expected from the distribution of baryons over 4 dex. Ultrafaint dSphs extend the relation by a further 2 dex and seem to trace a flattening at g_obs~10^-11 m/s^2. The radial acceleration relation exists for any plausible choice of the stellar mass-to-light ratio. For our fiducial values, the relation coincides with the 1:1 line (no DM) at high accelerations but systematically deviates from unity below a critical scale of ~10^-10 m/s^2. The observed scatter is remarkably small (~0.13 dex) and largely driven by observational uncertainties. The residuals show no correlations with other properties like radius, stellar surface density, or gas fraction. The radial acceleration relation is tantamount to a Natural Law: when the baryonic contribution is measured, the rotation curve follows, and vice versa. This local scaling law subsumes and generalizes several well-known dynamical properties of galaxies, like the Tully-Fisher and Faber-Jackson relations, the "baryon-halo" conspiracies, and Renzo's rule.