Title: A dozen type II-P supernovae seen with the eyes of Spitzer Authors: T. Szalai, J. Vinkó (Department of Optics and Quantum Electronics, University of Szeged, Szeged, Hungary)
Core-collapse supernovae (CC SNe), especially those of type II-plateau (II-P), are thought to be important contributors to cosmic dust production. The most obvious indicator of the presence of newly-formed and/or pre-existing dust is the time-dependent mid-infrared (MIR) excess coming from the environment of SNe. Our goal was to collect publicly available, previously unpublished measurements on type II-P (or peculiar IIP) SNe from the Spitzer database. The temporal changes of the observed fluxes may be indicative of the underlying supernova, while spectral energy distribution (SED) fitting to the fluxes in different IRAC channels may reveal the physical parameters of the mid-IR radiation, presumably due to warm dust. IRS spectra were extracted and calibrated with SPICE, while photometric SEDs were assembled using IRAF and MOPEX. Calculated SEDs from observed fluxes were fit with simple dust models to get basic information on the dust presumed as the source of MIR radiation. We found twelve SNe satisfying the criterion above, observed at late-time epochs (typically after +300 days). In three cases we could not identify any point source at the SN position on late time IRAC images. We found two SNe, 2005ad and 2005af, which likely have newly-formed dust in their environment, while in the other seven cases the observed MIR flux may originate from pre-existing circumstellar or interstellar dust. Our results support the previous observational conclusions that warm new dust in the environment of SNe contributes only marginally to cosmic dust content.