* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Molten magnesium silicate


L

Posts: 131433
Date:
Molten magnesium silicate
Permalink  
 


  Putting the squeeze on planets outside our solar system

Just as graphite can transform into diamond under high pressure, liquid magmas may similarly undergo major transformations at the pressures and temperatures that exist deep inside Earth-like planets.
Using high-powered lasers, scientists at Lawrence Livermore National Laboratory and collaborators discovered that molten magnesium silicate undergoes a phase change in the liquid state, abruptly transforming to a more dense liquid with increasing pressure. The research provides insight into planet formation.
Melts play a key role in planetary evolution. The team said that pressure-induced liquid-liquid phase separation in silicate magmas may represent an important mechanism for global-scale chemical differentiation and also may influence the thermal transport and convective processes that govern the formation of a mantle and core early in planetary history. Liquid-liquid phase separation is similar to the difference between oil and vinegar -- they want to separate because they have different densities. In the new research, however, the researchers noticed a sudden change between liquid states of silicate magma that displayed different physical properties even though they both have the same composition when high pressure and temperatures were applied.
The team used LLNL's Janus laser and OMEGA at the University of Rochester to conduct the experiments to achieve the extreme temperatures and pressures that exist in the interiors of exoplanets -- those objects outside our solar system.

Read more



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard