* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Magnetohydrodynamical simulations


L

Posts: 131433
Date:
RE: Magnetohydrodynamical simulations
Permalink  
 


Des champs magnétiques intenses peu après le Big Bang ?

D'intenses champs magnétiques ont probablement été générés dans l'Univers peu de temps après le Big Bang, selon une équipe internationale menée par Christoph Federrath et Gilles Chabrier du Centre de recherche astrophysique de Lyon (CNRS / ENS Lyon / Université Lyon 1). Les chercheurs fournissent la première explication à la présence de gaz magnétisé entre les galaxies ou entre les étoiles d'une même galaxie. Publiés dans la revue Physical Review Letters le 9 Septembre 2011, ces résultats pourraient permettre de mieux comprendre les propriétés des premières étoiles et galaxies dans l'Univers.
Read more  (French)



__________________


L

Posts: 131433
Date:
Permalink  
 

Title: Mach Number Dependence of Turbulent Magnetic Field Amplification: Solenoidal versus Compressive Flows
Authors: Federrath, C.; Chabrier, G.; Schober, J.; Banerjee, R.; Klessen, R. S.; Schleicher, D. R. G.

We study the growth rate and saturation level of the turbulent dynamo in magnetohydrodynamical simulations of turbulence, driven with solenoidal (divergence-free) or compressive (curl-free) forcing. For models with Mach numbers ranging from 0.02 to 20, we find significantly different magnetic field geometries, amplification rates, and saturation levels, decreasing strongly at the transition from subsonic to supersonic flows, due to the development of shocks. Both extreme types of turbulent forcing drive the dynamo, but solenoidal forcing is more efficient, because it produces more vorticity.

See more



__________________


L

Posts: 131433
Date:
Permalink  
 

Title: A robust numerical scheme for highly compressible magnetohydrodynamics: Nonlinear stability, implementation and tests
Authors: Knut Waagan, Christoph Federrath, Christian Klingenberg
(Version v4)

The ideal MHD equations are a central model in astrophysics, and their solution relies upon stable numerical schemes. We present an implementation of a new method, which possesses excellent stability properties. Numerical tests demonstrate that the theoretical stability properties are valid in practice with negligible compromises to accuracy. The result is a highly robust scheme with state-of-the-art efficiency. The scheme's robustness is due to entropy stability, positively and properly discretised Powell terms. The implementation takes the form of a modification of the MHD module in the FLASH code, an adaptive mesh refinement code. We compare the new scheme with the standard FLASH implementation for MHD. Results show comparable accuracy to standard FLASH with the Roe solver, but highly improved efficiency and stability, particularly for high Mach number flows and low plasma beta. The tests include 1D shock tubes, 2D instabilities and highly supersonic, 3D turbulence. We consider turbulent flows with RMS sonic Mach numbers up to 10, typical of gas flows in the interstellar medium. We investigate both strong initial magnetic fields and magnetic field amplification by the turbulent dynamo from extremely high plasma beta. The energy spectra show a reasonable decrease in dissipation with grid refinement, and at a resolution of 512³ grid cells we identify a narrow inertial range with the expected power-law scaling. The turbulent dynamo exhibits exponential growth of magnetic pressure, with the growth rate twice as high from solenoidal forcing than from compressive forcing. Two versions of the new scheme are presented, using relaxation-based 3-wave and 5-wave approximate Riemann solvers, respectively. The 5-wave solver is more accurate in some cases, and its computational cost is close to the 3-wave solver.

Read more  (1994kb, PDF)



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard