Title: Colours of Dynamically Associated Asteroid Pairs Authors: Nicholas Moskovitz
Recent dynamical studies have identified pairs of asteroids that reside in nearly identical heliocentric orbits. Possible formation scenarios for these systems include dissociation of binary asteroids, collisional disruption of a single parent body, or spin-up and rotational fission of a rubble-pile. Aside from detailed dynamical analyses and measurement of rotational light curves, little work has been done to investigate the colours or spectra of these unusual objects. A photometric and spectroscopic survey was conducted to determine the reflectance properties of asteroid pairs. New observations were obtained for a total of 34 individual asteroids. Additional photometric measurements were retrieved from the Sloan Digital Sky Survey Moving Object Catalogue. Colours or spectra for a total of 42 pair components are presented here. The main findings of this work are: (1) the components in the observed pair systems have the same colours within the uncertainties of this survey, and (2) the colour distribution of asteroid pairs appears indistinguishable from that of all Main Belt asteroids. These findings support a scenario of pair formation from a common progenitor and suggest that pair formation is likely a compositionally independent process. In agreement with previous studies, this is most consistent with an origin via binary disruption and/or rotational fission.
How Asteroids Split Up - Mystery of asteroid pairs solved
Asteroids are often thought of simply as big rocks orbiting the Sun, but they can have quite exciting lives. Small irregularly-shaped asteroids can be "spun up" to fast rotation rates by sunlight falling on them - much as the asymmetric profile of a propeller blade helps it to spin up in the wind. New results show that when asteroids spin fast enough, they can split into two pieces which then begin orbiting each other. Scientists call this process "rotational fission". A new study released this week, led by Petr Pravec of the Astronomical Institute in the Czech Republic and involving many other institutions around the world, shows that many of these binary asteroids do not remain bound to each other but escape, forming two asteroids in very similar, but independent, orbits about the Sun where previously there was just one. Read more