* Astronomy

Members Login
Username 
 
Password 
    Remember Me  
Post Info TOPIC: Asteroid 162173 Ryugu (1999 JU3)


L

Posts: 131433
Date:
Asteroid 162173 Ryugu (1999 JU3)
Permalink  
 


Title: Hayabusa-2 Mission Target Asteroid 162173 Ryugu (1999 JU3): Searching for the Object's Spin-Axis Orientation
Author: T. G. Müller, J. Durech, M. Ishiguro, M. Mueller, T. Krühler, H. Yang, M.-J. Kim, L. O'Rourke, F. Usui, C. Kiss, B. Altieri, B. Carry, Y.-J. Choi, M. Delbo, J. P. Emery, J. Greiner, S. Hasegawa, J. L. Hora, F. Knust, D. Kuroda, D. Osip, A. Rau, A. Rivkin, P. Schady, J. Thomas-Osip, D. Trilling, S. Urakawa, E. Vilenius, P. Weissman, P. Zeidler

The JAXA Hayabusa-2 mission was approved in 2010 and launched on December 3, 2014. The spacecraft will arrive at the near-Earth asteroid 162173 Ryugu in 2018 where it will perform a survey, land and obtain surface material, then depart in Dec 2019 and return to Earth in Dec 2020. We observed Ryugu with the Herschel Space Observatory in Apr 2012 at far-IR thermal wavelengths, supported by several ground-based observations to obtain optical lightcurves. We reanalysed previously published Subaru-COMICS and AKARI-IRC observations and merged them with a Spitzer-IRS data set. In addition, we used a large set of Spitzer-IRAC observations obtained in the period Jan to May, 2013. The data set includes two complete rotational lightcurves and a series of ten "point-and-shoot" observations. The almost spherical shape of the target together with the insufficient lightcurve quality forced us to combine radiometric and lightcurve inversion techniques in different ways to find the object's key physical and thermal parameters. We find that the solution which best matches our data sets leads to this C class asteroid having a retrograde rotation with a spin-axis orientation of (lambda = 310-340 deg; beta = -40+/-15 deg) in ecliptic coordinates, an effective diameter (of an equal-volume sphere) of 850 to 880 m, a geometric albedo of 0.044 to 0.050 and a thermal inertia in the range 150 to 300 Jm-2s-0.5K-1. Based on estimated thermal conductivities of the top-layer surface in the range 0.1 to 0.6 WK-1m-1, we calculated that the grain sizes are approximately equal to between 1 and 10 mm. The finely constrained values for this asteroid serve as a `design reference model', which is currently used for various planning, operational and modelling purposes by the Hayabusa2 team.

Read more (566kb, PDF)



__________________
Page 1 of 1  sorted by
 
Quick Reply

Please log in to post quick replies.



Create your own FREE Forum
Report Abuse
Powered by ActiveBoard